
Gene Expression and Subtype Analysis of Astrocytes in the Mouse Brain

Astrocytes, once considered a homogenous population, are now 
believed to differ in morphology, physiology, and molecular 
signatures. This diversity may be an important cellular underpinning 
of areal and laminar specificity in the cortex. However, a 
comprehensive understanding of astrocyte diversity across 
different cortical areas and laminae is lacking. In this study, we 
utilized processed whole-mouse brain MERFISH (Multiplexed 
Error-Robust Fluorescence in situ Hybridization) data from the 
Allen Institute Brain Cell Atlas to analyze astrocyte-specific gene 
expression and implemented machine learning algorithms to find 
subtypes. We conducted differential gene expression (DGE) analysis 
to identify astrocyte-specific genes and used K-means clustering to 
perform subtype analysis based on gene expression levels and cell 
coordinates. Our DGE analysis identified 908 out of 1122 
differentially expressed genes as specific to astrocytes, with 
significant genes illustrated in a series of Volcano plots. Additionally, 
our K-means clustering analysis based on astrocyte coordinates and 
gene expression levels found three potential astrocyte subtypes. 
These findings confirm that astrocytes are associated with a large 
number of specific genes as well as exhibit some form of spatial 
organization.

Abstract

In our study, we identified a significant number of astrocyte-specific 
genes, with 908 out of 1122 differentially expressed genes (DEGs) 
showing significant expression differences between non-astrocyte 
and astrocyte-specific groups. Notably, the top five 
astrocyte-specific genes identified include EYA transcriptional 
coactivator and phosphatase 4, Serine/threonine kinase 26, Tumor 
necrosis factor/alpha-induced protein 8-like 3, Calcium-sensing 
receptor, and SH3 domain containing ring finger. While the most 
significant genes identified in our analysis differ from those reported 
in previous studies, several significant genes from outside studies 
also showed significance in our analyses, indicating a degree of 
overlap and validation.

Additionally, using the elbow method, we determined that for all 4 
complete mouse brain samples, the number of astrocyte subtypes is 
best represented by three clusters. These clusters appear to be 
organized in distinct layers along the z-axis and align with previous 
findings by Zhuang et al. (2021), which suggested the existence of 
three potential astrocyte subtypes beyond known neuron subtypes. 
Our methodological approach, which involved normalization of the 
non-coordinate data and iterative application of K-means clustering 
on multiple subsets, ensured robust identification of these clusters. 
The elbow method was used to identify the optimal number of 
subtypes, while K-means clustering minimized the sum of squared 
distances from each point to the cluster centroids, thereby providing 
a precise classification of the number and location of potential 
astrocyte subtypes.
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Astrocytes, a type of glial cell that tiles the brain (Sofroniew et al, 
2010), possess various functions crucial for maintaining brain 
homeostasis. For instance, astrocytes regulate blood flow, transfer 
mitochondria to neurons, and supply amino acids to 
neurotransmitters, effectively fueling neuronal metabolism (Kim et 
al, 2019). Furthermore, they regulate synaptic transmission, or 
changes in synaptic connection strength. Synaptic transmission is 
the cellular basis of learning and memory, and the strength of these 
connections could be influenced by the expression levels of 
astrocyte-specific genes. 

Despite their once-believed homogeneity, astrocytes across 
different cortical layers differ in terms of morphology, physiology, 
and molecular signatures. Recent research suggests multiple 
subtypes with differing levels of gene expression in different cortical 
layers (Bayraktar et al, 2020).  This suggests that astrocytes might 
play specialized roles in specific brain regions, yet a comprehensive 
understanding of differences is lacking. To address this gap in 
knowledge, we turn to spatial transcriptomic (ST) techniques like 
MERFISH.

While astrocyte have been studied using traditional RNA-seq 
techniques, their investigation using imaging methods such as ST or 
MERFISH have been limited. By examining gene expression levels, 
we hope to identify which genes are astrocyte-specific. Additionally, 
by performing K-means clustering on the MERFISH data, we hope to 
determine how astrocyte subtypes organize themselves and if they 
exhibit layer specificity.

Introduction

Whole Mouse Brain MERFISH Datasets were retrieved from the 
Allen Institute, comprising data from one female and three male 
mice, totaling over 10 million imaged and MERFISH-segmented 
cells. The data included spatially resolved gene expression data for 
the entire mouse brain and single-cell RNA sequencing data for all 
four mouse samples. Each dataset consists of processed scRNA-seq 
data grouped based on cell similarities, AnnData objects mapped to 
the cell metadata for gene expression matrices, and a Cell-Centric 
File (CCF) containing the spatial coordinates of the cells.

Materials

1.  Data Collection
● Data Preprocessing: Split data into astrocyte vs. 

non-astrocyte groups, append gene data, calculate mean 
difference(s) in expression levels,  construct aggregate 
profiles by averaging expression values across astrocyte and 
non-astrocyte cells, data normalization, compute log2 fold 
change

2.  Identifying Astrocyte-Specific Genes
● Differential Gene Expression (DGE) Analysis: Using 

statistical analyses, identify astrocyte-specific genes, perform 
Bonferroni correction, and determine if they match known 
astrocyte markers

● Volcano Plot: Display significant genes in a Volcano plot with 
the most significant genes labelled 

3.  Investigate Astrocyte Homogeneity and Variation:
● K-means: An unsupervised machine learning method used to 

cluster astrocytes from MERFISH data by “closeness” based 
on cell coordinates and gene expression profiles to determine 
if they vary across cortical layers

● Elbow Method: Determine the optimal number of clusters for 
each of the mouse-brain samples

● Plot K-means Clusters: Plot a 3D k-means clustering with 
coordinates ( 𝑥 , 𝑦 , 𝑧 ) from clustering CCF data while 
considering gene expression as an additional variable

● Evaluate Metrics: Iterate the K-means algorithm on the data 
and compare Goodness of Fit (GOF) metrics such as the 
Silhouette Score

4.  Data Validation
● Compare to External Research: Determine whether the 

astrocyte subtypes and quantities identified through our 
K-means algorithm align with outside findings from other 
research, such as astrocyte subtype analysis utilizing 
scRNA-seq data

● Compare to Neuron ST Data: Since neurons are known 
exhibit layer specificity, compare Astrocyte cluster 
boundaries to neuron boundaries

Methodology

In our initial differential expression analysis 
using a volcano plot, we identified 908 
astrocyte-specific genes out of 1122 total genes. 

Most were passed as significant due to the large 
number of t-tests conducted. Applying a  
Bonferroni correction accounts for this by 
adjusting the significance threshold according to 
the number of tests, ensuring that identified 
genes are more likely to represent true 
differential expression. After the p-value is 
divided by total number of tests, only 104 genes 
were significant. The volcano plots in Figure 3 
illustrates the number of significant genes 
before (left) and after (right) correction.

Results
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Figure 3: Volcano Plots of Astrocyte Differentially Expressed Genes

Figure 2: Elbow Method Showing the Optimal 
Number of Clusters for the K-means Algorithm

Figure 1: Variation in astrocyte-specific gene expression 
across different cortical layers (Bayraktar et al., 2020).
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The K-means clustering of 3D coordinates and gene expression levels yielded the following separation, identifying three potential candidates 
for astrocytic subtypes consistently across all four samples. Below are the clustering results based on the common coordinate framework 
(CCF) and gene expression values for each mouse brain sample.

Figure 4: K-means Clustering of Whole Mouse Brain Samples Based on Coordinates and Gene Expression Levels
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